Gå til innhold
Trenger du skole- eller leksehjelp? Still spørsmål her ×

Den enorme matteassistansetråden


Anbefalte innlegg

Videoannonse
Annonse

Det funket. Gracias! Men hvis det hadde stått chart?cht=tx&chl=\large((f(3x^2+15))^4)^,hva hadde da svaret blitt? Prøvde å svare med chart?cht=tx&chl=24x f(3x^2+15)^3 g(3x^2+15)men det var tydeligvis ikke rett... Skjønner ikke helt hva jeg gjør galt.

 

 

rart, Wolfram er enig med deg (jeg også)

 

http://www.wolframalpha.com/input/?i=%28%28f%283x%5E2%2B15%29%5E4%29%27

 

har du fasit?

Hei! :D Har et kjapt mattespørsmål innenfor sannsynlighet :p

Oppgaven er som følger: "Vi kaster med fem terninger. Hva er sannsynligheten for å få minst en sekser?"
Jeg fant formelen "p(minst en sekser) = 1 - p(ingen sekser) og prøvde den som da blir

p(ingen sekser) = 5^5 / 6^5 = 3125 / 7776
p(minst en sekser) = 1- 3125 / 7776 = 7776 / 7776 - 3125 / 7776 = 4651 / 7776

 

Problemet er at boka påstår at svaret er 7775 / 7776 :( Har boka eller jeg rett? :)

Hvor mange permutasjoner av tallene 0,1,2,3,4,5,6,7,8,9 er slik at perm. enten starter med 3 eller slutter med 7? Noen som gidder å forklare hvordan man tenker? Og er det 10! eller 9! permutasjoner totalt?

 

EDIT: Tenkte at når det ene sifferet var fastsatt to ganger ble det totale antallet 9! + 9!, men det stemte ikke...

Endret av prasa93

Hvor mange permutasjoner av tallene 0,1,2,3,4,5,6,7,8,9 er slik at perm. enten starter med 3 eller slutter med 7? Noen som gidder å forklare hvordan man tenker? Og er det 10! eller 9! permutasjoner totalt?

 

EDIT: Tenkte at når det ene sifferet var fastsatt to ganger ble det totale antallet 9! + 9!, men det stemte ikke...

 

Det er mulig oppgaven spør litt vagt, og mener du skal trekke fra alle permutasjoner som tilfredsstiller begge kriteriene. (A snitt B). Antall perm. som både begynner med 3 og slutter med 7 = 8!. Altså får du 9!+9!-8!

Find the equation of the straight line that passes though the point (0,b) and is tangent to the curve y=1/x. Assume b different from zero


---
Tangentlinjen krysser altså y-aksen, og ettersom b er forskjellig fra null vet vi at tangenten ikke er horisontal. Tangeringspunktet vet vi ikke, men vi kan jo kalle det (a,(1/a)). Bruker ettpunktsformelen og finner m=(((1/a)-b)/a). Er jeg på riktig vei- eller..?

Hvordan skal jeg oppgi svaret på denne?

 

post-102350-0-06076000-1378652617_thumb.png

 

Har jo funnet ut at den deriverte vel blir

40x*f(5x^2+11)^3*f'(5x^2+11)

 

Skal jeg skrive inn svaret som dette? Jeg har alt levert denne onlinetesten 1 gang, og da fikk jeg feil når jeg oppga svaret på den måten. Har derivert vha. Wolframalpha, så regner med den er riktig derivert.

Find a second order polynomial (i.e. highest exponent is 2) p(x) such that p(x) and 4cos(15x)+12 and their first and second derivatives are equal at the point 0

 

Sett ax2+bx+c = 4cos(15x)+12 og se hva som skjer med funksjonen, den deriverte, og den andrederiverte når x=0.

 

Har jo funnet ut at den deriverte vel blir

40x*f(5x^2+11)^3*f'(5x^2+11)

 

Skal jeg skrive inn svaret som dette? Jeg har alt levert denne onlinetesten 1 gang, og da fikk jeg feil når jeg oppga svaret på den måten. Har derivert vha. Wolframalpha, så regner med den er riktig derivert.

 

Ville i hvert fall slengt inn noen flere parenteser for å unngå at Maple feiltolker noe.

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!

Start en konto

Logg inn

Har du allerede en konto? Logg inn her.

Logg inn nå
×
×
  • Opprett ny...