Gå til innhold
Trenger du skole- eller leksehjelp? Still spørsmål her ×

Den enorme matteassistansetråden


Anbefalte innlegg

Videoannonse
Annonse
Skrevet

Er det noen som vet om den regneregelen for determinanter står i formelheftet. Jeg finner den ikke slik oppsettet er i læreboka mi:dontgetit:

 

Æ har den siste utgaven av formelsamlingen fra 2009, den grønne som dekker 1P, 2P, 1T, 2T, S1, S2, R1, R2.

For de av dere som har denne, kan se øverst på s. 40. Vet ikke om dette kan være en form for regel når det gjelder 3x3 determinanter?

 

HJÆLP pliiz anyone :ph34r:

Skrevet

hvorfor får jeg ikke fram profilbilde mitt forresten? Vet jeg kanskje skulle tatt dette i en annen tråd, bare aner ikke hvor. :dontgetit:

Skrevet (endret)

Hvilken regneregel er det du snakker om? Måten å regne ut en 3x3-matrise?

 

Edit: 3x3-determinant, så klart.

Endret av wingeer
Skrevet

hvorfor får jeg ikke fram profilbilde mitt forresten? Vet jeg kanskje skulle tatt dette i en annen tråd, bare aner ikke hvor. :dontgetit:

Det biletet som er ved sida av innlegga er ein avatar, ikkje eit profilbilete, du endrer den her:

https://www.diskusjon.no/index.php?app=core&module=usercp&tab=members&area=avatar

 

Elles har me eit tilbakemeldingsforum, der eit slikt spørsmål kunne passe:

https://www.diskusjon.no/index.php?showforum=179

Skrevet

Er det noen som vet om den regneregelen for determinanter står i formelheftet. Jeg finner den ikke slik oppsettet er i læreboka mi:dontgetit:

Æ har den siste utgaven av formelsamlingen fra 2009, den grønne som dekker 1P, 2P, 1T, 2T, S1, S2, R1, R2.

For de av dere som har denne, kan se øverst på s. 40. Vet ikke om dette kan være en form for regel når det gjelder 3x3 determinanter?

HJÆLP pliiz anyone :ph34r:

jepp, stemmer det...kan brukes til 3x3 determinanter.

Skrevet (endret)

R2.

Jeg har hatt R2, og det var ikke pensum.

 

edit: Vel, man kan jo skrive kryssprodukt og volum av parallellepiped som en determinant.

Endret av Frexxia
Skrevet

Kan noen si meg hvordan jeg gjør følgende på kalkulator?

 

Faktoriser andregradsuttrykket: y=2x^2+x-3

 

Også skal jeg forkorte denne brøkeen: 2x^2+x-3 / x-1

 

Håper på raskt svar. :)

Skrevet

Eksisterer det to ikke-parallelle vektorer i R2, som ikke spenner hele R2?

Nei.

 

 

Kan noen si meg hvordan jeg gjør følgende på kalkulator?

 

Faktoriser andregradsuttrykket: y=2x^2+x-3

 

Også skal jeg forkorte denne brøkeen: 2x^2+x-3 / x-1

Veit ikkje kva kalkulator du har, men det er uansett so lenge sidan eg brukte ein kalkulator som kunne gjere slikt at det ikkje ville hjelpe. Men litt generelt:

 

Ei andregradslikning på forma chart?cht=tx&chl=ax^2+bx+c=0 med nullpunkt chart?cht=tx&chl=x_1 og chart?cht=tx&chl=x_2 kan skrivast på forma chart?cht=tx&chl=a(x-x_1)(x-x_2). På kalkulatorar av typen brukt på vidaregåande er det ein funksjon for å løyse andregradsuttrykk, det vil seie finne nullpunkta. Bruk den, og skriv om funksjonen slik eg nemnte. Og då vil den andre oppgåva di vere praktisk talt løyst.

Skrevet (endret)

Takker for svar. Jeg fikk det til. :)

 

Kan noen hjelpe med denne?

 

1) Divisjonen (2x^4+ax^3-8x+3):(x-1) går opp. Hva er a?

 

2) Løs likningen:

likning.png

Endret av Nistelrooy

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!

Start en konto

Logg inn

Har du allerede en konto? Logg inn her.

Logg inn nå
  • Hvem er aktive   0 medlemmer

    • Ingen innloggede medlemmer aktive
×
×
  • Opprett ny...