Frexxia Skrevet 1. desember 2009 Skrevet 1. desember 2009 Det er såvidt jeg vet generelt slik for større produkter også
Senyor de la guerra Skrevet 1. desember 2009 Skrevet 1. desember 2009 Hva er uttrykket for volumet der området mellom y-aksen, y = sqrt(2) og x = y^2 roteres rundt x-aksen? Ved skivemetoden? bump
Frexxia Skrevet 1. desember 2009 Skrevet 1. desember 2009 (endret) om jeg ikke tar feil. Tilsvarende integral for sylinderskall (som det sikkert er tiltenkt at man skal bruke her, da funksjonen er gitt for x?) Endret 1. desember 2009 av Frexxia
Senyor de la guerra Skrevet 1. desember 2009 Skrevet 1. desember 2009 (endret) @Frexxia: Takker Noen som har et godt system for kontroll av konvergens på en rekke? Tenker på en slag algoritme som sier hva slags test du bør bruke først, nr. to osv... Endret 1. desember 2009 av runesole
Xell Skrevet 2. desember 2009 Skrevet 2. desember 2009 Altså, , osv.? Ja. Tenk på det slik; osv osv til du ikke trenger å substituere lenger.
jk_90 Skrevet 2. desember 2009 Skrevet 2. desember 2009 Hei, sitter og jobber med oppgaver, og klarer ikke å løse denne: En funksjon er gitt ved: F(x)=6e^-0.5x*sinx, x er mellom [0,2π] A) Finn eventuelle nuullpunkter for f. Noen som kan hjelpe meg?
hockey500 Skrevet 2. desember 2009 Skrevet 2. desember 2009 f(x) er null når en av faktorene er null. her har du faktorene 6e^-0.5x og sin(x). da burde det være overkommelig å finne nullpunkter for de separat. hint: den første har ingen.
jk_90 Skrevet 2. desember 2009 Skrevet 2. desember 2009 ah sånn ja, da skjønte jeg den Tusen takk for svar!
MrUrge Skrevet 2. desember 2009 Skrevet 2. desember 2009 Vet ikke om dette er riktig tråd å spørre i, men dere vet det sikkert. Åssen finner jeg ut tiden en gjenstand bruker på en strekning når jeg har strekninga, friksjonstallet og farten ?
Imaginary Skrevet 2. desember 2009 Skrevet 2. desember 2009 Friksjonstallet gir opphav til en negativ akselerasjon. Denne setter du i bevegelsesligningen og løser for tid.
Imaginary Skrevet 2. desember 2009 Skrevet 2. desember 2009 (endret) Det er forresten unødvendig å poste i 2 tråder. Endret 2. desember 2009 av Imaginary
Frexxia Skrevet 2. desember 2009 Skrevet 2. desember 2009 (endret) Hvilken bevegelsesligning? Det er bare én bevegelseslikning som har både strekning, akselerasjon og tid, så du har ikke så mye å velge mellom. edit: for sent der ja Endret 2. desember 2009 av Frexxia
MrUrge Skrevet 2. desember 2009 Skrevet 2. desember 2009 Det er forresten unødvendig å poste i 2 tråder. Takk, men har prøvd med den allerede.. Posta først her siden jeg ikke visste om fysikktråden, så da spurte jeg i fysikktråden rett etter. Men hjelp meg heller i fysikktråden, sliter litt..
justinvernon Skrevet 2. desember 2009 Skrevet 2. desember 2009 Hei! Hadde eksamen i R1 idag, og lurer på noen små ting. Regn hvis dere orker Vektorfunksjon som viser posisjonen til en partikkel etter t sekunder er gitt ved: Det er 2 ting jeg lurer på her, henholdsvis oppgave c og d. c) Finn farten (absoluttverdi av fartsvektoren) etter 2 sek, her fikk jeg 4.4 m/s elns. e) Finn vinkelen mellom posisjonsvektoren og fartvektoren i det høyeste punktet, her fikk jeg 32.4 grader. Takker veldig for svar!
the_last_nick_left Skrevet 2. desember 2009 Skrevet 2. desember 2009 (endret) Viktigere enn tallet du fikk er hva du gjorde. Hvordan kom du frem til 4,4m/s og 32,4 grader? Endret 2. desember 2009 av the_last_nick_left
justinvernon Skrevet 2. desember 2009 Skrevet 2. desember 2009 Viktigere enn tallet du fikk er hva du gjorde. Hvordan kom du frem til 4,4m/s og 32,4 grader? For å få 4.4 m/s deriverte jeg posisjonsvektoren, for å få fartsvektor, så tok jeg Hvor x er første koordinaten, og y 2. For å finne vinkelen brukte jeg
the_last_nick_left Skrevet 2. desember 2009 Skrevet 2. desember 2009 Da har du riktig fremgangsmåte. Om tallene stemmer har jeg ikke sjekket, men det er ikke så farlig om du har satt inn feil tall så lenge fremgangsmåten er riktig.
Anbefalte innlegg
Opprett en konto eller logg inn for å kommentere
Du må være et medlem for å kunne skrive en kommentar
Opprett konto
Det er enkelt å melde seg inn for å starte en ny konto!
Start en kontoLogg inn
Har du allerede en konto? Logg inn her.
Logg inn nå