Gå til innhold

En matematikkoppgave (i analyse)


DrKarlsen

Anbefalte innlegg

Fikk en oppgave her om dagen som jeg ikke klarer å løse skikkelig, tror jeg er godt på vei, men er litt usikker. Siden jeg vet det finnes friske folk her inne poster jeg den her:

 

Finnes det en deriverbar funksjon f:R -> R som tilfredstiller f(0)=1 og f'(x) >= f(x)^2 for alle x \in R?

 

Noe jeg har gjort er å vise at f(x) > 0 i [0,inf[, så har jeg gjort noe mer, men jeg er ikke sikker på om det er riktig, så jeg tar det ikke med.

Videoannonse
Annonse

Jepp, ble ferdig med den nå...

 

f(x) > 0 på [0,inf[, siden f(0) = 1 og f'(x) >= f(x)^2 >= 0. For x >= 0, integrerer f'(x)/f(x)^2 >= 1 fra 0 til x, får vi 1 - 1/f(x) >= x. Dette fører til f(x) >= 1/(1-x) på [0,1[. Derfor finnes ikke lim(x->1) { f(x) }, og det motsier kontinuiteten til f.

  • 3 uker senere...

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!

Start en konto

Logg inn

Har du allerede en konto? Logg inn her.

Logg inn nå
  • Hvem er aktive   0 medlemmer

    • Ingen innloggede medlemmer aktive
×
×
  • Opprett ny...